THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS MATH2010D Advanced Calculus 2019-2020

Solution to Problem Set 1

- 1. Suppose that $\mathbf{u} = 5\mathbf{i} + 12\mathbf{j}$ and $\mathbf{v} = -6\mathbf{i} 8\mathbf{j}$. Find
	- (a) $\mathbf{u} \cdot \mathbf{v}$,
	- (b) $|\mathbf{u}|$ and $|\mathbf{v}|$,
	- (c) the angle between u and v.

Ans:

- (a) $\mathbf{u} \cdot \mathbf{v} = (5)(-6) + (12)(-8) = -126$
- (b) $|\mathbf{u}| =$ √ $5^2 + 12^2 = 13$ and $|\mathbf{v}| = \sqrt{(-6)^2 + (-8)^2} = 10$. (c) The angle between **u** and $\mathbf{v} = \cos^{-1} \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v}} \right)$ $|\mathbf{u}||\mathbf{v}|$ $\bigg) = \cos^{-1}\left(-\frac{63}{65}\right) \approx 166^{\circ}.$
- 2. Let $\mathbf{a} = 4\mathbf{i} 3\mathbf{j} + 5\mathbf{k}$ and $\mathbf{b} = \mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$.
	- (a) Express $\mathbf{a} = \mathbf{u} + \mathbf{v}$ such that **u** is parallel to **b** and **v** is orthogonal to **b**.
	- (b) Find the area of parallelogram spanned by a and b.

Ans:

(a) We have

$$
\mathbf{u} = \text{proj}_{\mathbf{b}}(\mathbf{a}) = \left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|^2}\right) \mathbf{b} = \frac{8}{9} (\mathbf{i} + 2\mathbf{j} + 2\mathbf{k})
$$

and

$$
\mathbf{v} = \mathbf{a} - \mathbf{u} = \frac{1}{9}(28\mathbf{i} - 43\mathbf{j} + 29\mathbf{j}).
$$

(b) The area of parallelogram spanned by a and b is

$$
|\mathbf{a} \times \mathbf{b}| = |\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 4 & -3 & 5 \\ 1 & 2 & 2 \end{vmatrix}| = |-16\mathbf{i} - 3\mathbf{j} + 11\mathbf{k}| = \sqrt{386}.
$$

3. Let $A = (3,3,0), B = (-2,-3,2)$ and $C = (1,0,3)$ be three points in \mathbb{R}^3 . Find the volume of the tetrahedron OABC.

Ans:

volume of the tetrahedron $OABC = \frac{1}{c}$ $\frac{1}{6}$ × volume of the parallelepipe spanned by \overrightarrow{OA} , \overrightarrow{OB} and \overrightarrow{OC}

$$
= \frac{1}{6} \times \begin{vmatrix} 3 & 3 & 0 \\ -2 & -3 & 2 \\ 1 & 0 & 3 \end{vmatrix}
$$

$$
= \frac{1}{6} \times \begin{vmatrix} 3 & 3 & 0 \\ -2 & -3 & 2 \\ 1 & 0 & 3 \end{vmatrix}
$$

$$
= \frac{1}{2}
$$

4. Let A and B be two points in \mathbb{R}^n and let $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$.

Suppose that C is a point on AB such that $AC : CB = r : s$, where $r, s \in \mathbb{R}$. Show that

$$
\overrightarrow{OC} = \frac{1}{r+s}(r\mathbf{b} + s\mathbf{a}).
$$

Ans:

Note that $\overrightarrow{AC} = \frac{r}{A}$ $\frac{r}{r+s}\overrightarrow{AB} = \frac{r}{r+s}$ $\frac{r}{r+s}$ (**b** – **a**). Then, $\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC} = \mathbf{a} + \frac{r}{A}$ $\frac{r}{r+s}$ (**b** - **a**) = $\frac{1}{r+s}$ (**rb** + **sa**).

Remark: In particular, if $A = (x_1, y_1)$ and $B = (x_2, y_2)$ are two points in \mathbb{R}^2 (i.e. $\overrightarrow{OA} = x_1 \mathbf{i} + y_1 \mathbf{j}$ and $\overrightarrow{OB} = x_2 \mathbf{i} + y_2 \mathbf{j}$, then we have $\overrightarrow{OC} = (\frac{rx_2 + sx_1}{r+s})\mathbf{i} + (\frac{ry_2 + sy_1}{r+s})\mathbf{j}$, that means $\overrightarrow{C} = (\frac{rx_2 + sx_1}{r+s}, \frac{ry_2 + sy_1}{r+s})$ $\frac{z + 6y_1}{r + s}$), which is the section formula we learned in secondary school.

5. Let **p** and **q** be nonzero vectors in \mathbb{R}^n such that they are not parallel and let $a_1, a_2, b_1, b_2 \in \mathbb{R}$.

Prove that if $a_1\mathbf{p} + a_2\mathbf{q} = b_1\mathbf{p} + b_2\mathbf{q}$, then $a_1 = b_1$ and $a_2 = b_2$.

Ans:

If $a_1\mathbf{p} + a_2\mathbf{q} = b_1\mathbf{p} + b_2\mathbf{q}$, then we have $(a_1 - b_1)\mathbf{p} = (b_2 - a_2)\mathbf{q}$.

We claim that $a_1 = b_1$. Otherwise, $a_1 - b_1 \neq 0$ and we have $p = \frac{b_2 - a_2}{a_1 - b_1}$ $\frac{a_2}{a_1 - b_1}$ **q** which implies **p** is parallel to **q** that contradicts to the assumption. Therefore, we have $a_1 = b_1$.

As a result $a_1 - b_1 = 0$. Therefore, $(b_2 - a_2)\mathbf{q} = \mathbf{0}$, but **q** is nonzero, so $b_2 - a_2 = 0$, i.e. $a_2 = b_2$.

In the above diagram, $ABCD$ is a parallelogram and F is a point on AB .

Suppose that DF and AC intersect at the point E such that $DE : EF = \lambda : 1$, where $\lambda > 0$. Let $\overrightarrow{AB} = \mathbf{p}, \overrightarrow{AD} = \mathbf{q}, \overrightarrow{AE} = h\overrightarrow{AC}$ and $\overrightarrow{AF} = k\overrightarrow{AB}$, where $h, k > 0$.

- (a) i. Express \overrightarrow{AE} in terms of h, **p** and **q**.
	- ii. Express \overrightarrow{AE} in terms of λ , k **p** and **q**. Hence, show that $\lambda = \frac{1}{l}$ $\frac{1}{k}$.

(b) Given that
$$
|\mathbf{p}| = 3
$$
, $|\mathbf{q}| = 2$ and $\angle DAB = \frac{\pi}{3}$.

- i. Find $\mathbf{p} \cdot \mathbf{q}$.
- ii. Suppose that DF is perpendicular to AC .
	- (1) Express \overrightarrow{DF} in terms of k, **p** and **q**, and so find the value of k.
	- (2) Using (a), find the length of AE.

Ans:

(a) i.
$$
\overrightarrow{AE} = h\overrightarrow{AC} = h(\mathbf{p} + \mathbf{q})
$$

ii. $\overrightarrow{AE} = \frac{1}{1+}$ $\frac{1}{1+\lambda}(\lambda \overrightarrow{AF} + 1\overrightarrow{AD}) = \frac{1}{1+\lambda}(k\lambda \mathbf{p} + \mathbf{q}).$ Therefore, $h(\mathbf{p} + \mathbf{q}) = \frac{1}{1 + \lambda} (k\lambda \mathbf{p} + \mathbf{q})$. Then, we have $h = \frac{k\lambda}{1 + \lambda}$ $rac{k\lambda}{1+\lambda}$ and $h = \frac{1}{1+h}$ $\frac{1}{1 + \lambda}$. Hence, $k\lambda = 1$ and the result follows. (b) i. $\mathbf{p} \cdot \mathbf{q} = |\mathbf{p}| |\mathbf{q}| \cos \angle DAB = 3$ ii. (1) $\overrightarrow{DF} = \overrightarrow{AF} - \overrightarrow{AD} = k\mathbf{p} - \mathbf{q}$.

Since $\overrightarrow{DF} \perp \overrightarrow{AC}$, we have $\overrightarrow{DF} \cdot \overrightarrow{AC} = 0$. Then,

$$
(k\mathbf{p} - \mathbf{q}) \cdot (\mathbf{p} + \mathbf{q}) = 0
$$

\n
$$
k|\mathbf{p}|^2 + (k-1)\mathbf{p} \cdot \mathbf{q} - |\mathbf{q}|^2 = 0
$$

\n
$$
9k + 3(k-1) - 4 = 0
$$

\n
$$
k = \frac{7}{12}
$$

\n
$$
\frac{12}{7}, h = \frac{7}{10}. \text{ Then, } |\overrightarrow{AE}|^2 = |\frac{7}{10}(\mathbf{p} + \mathbf{q})|^2 = (\frac{7}{10})^2(\mathbf{p} + \mathbf{q}) \cdot (\mathbf{p} + \mathbf{q})
$$

(2) For
$$
k = \frac{7}{12}
$$
, $\lambda = \frac{12}{7}$, $h = \frac{7}{19}$. Then, $|\overrightarrow{AE}|^2 = |\frac{7}{19}(\mathbf{p} + \mathbf{q})|^2 = (\frac{7}{19})^2(\mathbf{p} + \mathbf{q}) \cdot (\mathbf{p} + \mathbf{q}) = \frac{49}{19}$.
\nHence, $|\overrightarrow{AE}| = \frac{7\sqrt{19}}{19}$.

7.

In the above diagram, A, B, C are three distinct points in \mathbb{R}^2 and let $\overrightarrow{AB} = \mathbf{p}$, $\overrightarrow{AC} = \mathbf{q}$. Suppose that D , E and F are mid-points of AB, AC and BC respectively, M is the intersection of CD and BE.

- (a) Suppose that $CM : MD = r : 1$ and $BM : ME = s : 1$, where $r, s > 0$.
	- i. Express \overrightarrow{AM} in terms of r, **p** and **q**.

 $\overline{7}$

ii. Express \overrightarrow{AM} in terms of s, **p** and **q**.

iii. Hence, show that
$$
r = s = 2
$$
 and $\overrightarrow{AM} = \frac{1}{3}(\mathbf{p} + \mathbf{q})$.

(b) Prove that three medians AF , BE and CD of $\triangle ABC$ intersect at the point M.

Also, prove that $CM : MD = BM : ME = AM : MF = 2:1$.

Ans:

(a) i.
$$
\overrightarrow{AM} = \frac{1}{1+r} (1\overrightarrow{AC} + r\overrightarrow{AD}) = \frac{1}{1+r} (\mathbf{q} + \frac{r}{2}\mathbf{p}) = \frac{r}{2(1+r)} \mathbf{p} + \frac{1}{1+r} \mathbf{q}
$$

\nii. $\overrightarrow{AM} = \frac{1}{1+s} (1\overrightarrow{AB} + s\overrightarrow{AE}) = \frac{1}{1+s} (\mathbf{p} + \frac{s}{2}\mathbf{q}) = \frac{1}{1+s} \mathbf{p} + \frac{s}{2(1+s)} \mathbf{q}$
\niii. Hence, we have $\frac{r}{2(1+r)} = \frac{1}{1+s}$ and $\frac{1}{1+r} = \frac{s}{2(1+s)}$.
\nBy solving the above, we have $r = s = 2$. By putting $r = 2$ into the result in (a)(i), we have $\overrightarrow{AM} = \frac{1}{3} (\mathbf{p} + \mathbf{q})$.

(b) Note that $\overrightarrow{AF} = \frac{1}{2}$ $\frac{1}{2}(\mathbf{p}+\mathbf{q}), \text{ so } \overrightarrow{AM} = \frac{2}{3}$ $\frac{2}{3}\overrightarrow{AF}$ which means \overrightarrow{AM} is parallel to \overrightarrow{AF} . Therefore, A, M and F are collinear.

Furthermore, $\overrightarrow{MF} = \frac{1}{2}$ $\frac{1}{3}\overrightarrow{AF}$, so $AM : MF = 2 : 1$. Therefore, we have $CM : MD = BM : ME = AM$: $MF = 2 : 1.$

8. Let $a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n \in \mathbb{R}$ and let

$$
p(t) = \sum_{i=1}^{n} (a_i - b_i t)^2
$$

be a polynomial.

By using the fact that $p(t) \geq 0$ for all $t \in \mathbb{R}$, prove that the Cauchy Schwarz inequality holds, i.e.

$$
\left(\sum_{i=1}^n a_i b_i\right)^2 \le \left(\sum_{i=1}^n a_i^2\right) \left(\sum_{i=1}^n b_i^2\right)
$$

and the equality holds if and only if $a_1 = tb_1, a_2 = tb_2, \ldots, a_n = tb_n$ for some $t \in \mathbb{R}$.

Ans:

Note that

$$
p(t) = \sum_{i=1}^{n} (a_i - b_i t)^2
$$

= $\left(\sum_{i=1}^{n} b_i^2\right) t^2 - 2 \left(\sum_{i=1}^{n} a_i b_i\right) t + \left(\sum_{i=1}^{n} a_i^2\right) t^2$

Clearly, $\left(\sum_{n=1}^n\right)$ $i=1$ b_i^2 $\Big) \geq 0.$ However, if $\Big(\sum_{n=1}^{\infty}$ $i=1$ b_i^2 \setminus $= 0$, then $b_1 = b_2 = \cdots = b_n = 0$ and so the required inequality is trivially true.

Now, we assume that $\left(\sum_{n=1}^n\right)$ $i=1$ b_i^2 > 0. Note that $p(t) \ge 0$ for all $t \in \mathbb{R}$, the quadratic equation $p(t) = 0$ has either no solution or only one solution. Therefore, the discriminant of $p(t)$ is less than or equals to 0.

$$
\left[2\left(\sum_{i=1}^n a_i b_i\right)\right]^2 - 4\left(\sum_{i=1}^n a_i^2\right)\left(\sum_{i=1}^n b_i^2\right) \leq 0
$$

$$
4\left(\sum_{i=1}^n a_i b_i\right)^2 \leq 4\left(\sum_{i=1}^n a_i^2\right)\left(\sum_{i=1}^n b_i^2\right)
$$

$$
\left(\sum_{i=1}^n a_i b_i\right)^2 \leq \left(\sum_{i=1}^n a_i^2\right)\left(\sum_{i=1}^n b_i^2\right)
$$

Furthermore, the equality holds if and only if the discriminant of $p(t)$ equals to 0, which means $p(t) = 0$ has exactly one solution. Therefore, each square in the summation of $p(t)$ must be zero, i.e. $a_i - tb_i = 0$, i.e. $a_i = tb_i$ for all $i = 1, 2, ..., n$.