THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS MATH2010D Advanced Calculus 2019-2020

Solution to Problem Set 1

- 1. Suppose that $\mathbf{u} = 5\mathbf{i} + 12\mathbf{j}$ and $\mathbf{v} = -6\mathbf{i} 8\mathbf{j}$. Find
 - (a) $\mathbf{u} \cdot \mathbf{v}$,
 - (b) $|\mathbf{u}|$ and $|\mathbf{v}|$,
 - (c) the angle between \mathbf{u} and \mathbf{v} .

Ans:

- (a) $\mathbf{u} \cdot \mathbf{v} = (5)(-6) + (12)(-8) = -126$
- (b) $|\mathbf{u}| = \sqrt{5^2 + 12^2} = 13$ and $|\mathbf{v}| = \sqrt{(-6)^2 + (-8)^2} = 10.$ (c) The angle between \mathbf{u} and $\mathbf{v} = \cos^{-1}\left(\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|}\right) = \cos^{-1}\left(-\frac{63}{65}\right) \approx 166^\circ.$
- 2. Let $\mathbf{a} = 4\mathbf{i} 3\mathbf{j} + 5\mathbf{k}$ and $\mathbf{b} = \mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$.
 - (a) Express $\mathbf{a} = \mathbf{u} + \mathbf{v}$ such that \mathbf{u} is parallel to \mathbf{b} and \mathbf{v} is orthogonal to \mathbf{b} .

ī

(b) Find the area of parallelogram spanned by **a** and **b**.

Ans:

(a) We have

$$\mathbf{u} = \operatorname{proj}_{\mathbf{b}}(\mathbf{a}) = \left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|^2}\right)\mathbf{b} = \frac{8}{9}(\mathbf{i} + 2\mathbf{j} + 2\mathbf{k})$$

and

$$v = a - u = \frac{1}{9}(28i - 43j + 29j)$$

(b) The area of parallelogram spanned by **a** and **b** is

$$|\mathbf{a} \times \mathbf{b}| = |$$
 $\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 4 & -3 & 5 \\ 1 & 2 & 2 \end{vmatrix} |$ $| = | -16\mathbf{i} - 3\mathbf{j} + 11\mathbf{k} | = \sqrt{386}$

3. Let A = (3, 3, 0), B = (-2, -3, 2) and C = (1, 0, 3) be three points in \mathbb{R}^3 . Find the volume of the tetrahedron *OABC*.

Ans:

volume of the tetrahedron $OABC = \frac{1}{6} \times$ volume of the parallelepipe spanned by \overrightarrow{OA} , \overrightarrow{OB} and \overrightarrow{OC}

4. Let A and B be two points in \mathbb{R}^n and let $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$.

Suppose that C is a point on AB such that AC: CB = r: s, where $r, s \in \mathbb{R}$. Show that

$$\overrightarrow{OC} = \frac{1}{r+s}(r\mathbf{b} + s\mathbf{a}).$$

Ans:

Note that $\overrightarrow{AC} = \frac{r}{r+s}\overrightarrow{AB} = \frac{r}{r+s}(\mathbf{b}-\mathbf{a})$. Then, $\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC} = \mathbf{a} + \frac{r}{r+s}(\mathbf{b}-\mathbf{a}) = \frac{1}{r+s}(r\mathbf{b}+s\mathbf{a}).$

Remark: In particular, if $A = (x_1, y_1)$ and $B = (x_2, y_2)$ are two points in \mathbb{R}^2 (i.e. $\overrightarrow{OA} = x_1 \mathbf{i} + y_1 \mathbf{j}$ and $\overrightarrow{OB} = x_2 \mathbf{i} + y_2 \mathbf{j}$), then we have $\overrightarrow{OC} = (\frac{rx_2 + sx_1}{r+s})\mathbf{i} + (\frac{ry_2 + sy_1}{r+s})\mathbf{j}$, that means $C = (\frac{rx_2 + sx_1}{r+s}, \frac{ry_2 + sy_1}{r+s})$, which is the section formula we learned in secondary school.

5. Let **p** and **q** be nonzero vectors in \mathbb{R}^n such that they are not parallel and let $a_1, a_2, b_1, b_2 \in \mathbb{R}$.

Prove that if $a_1\mathbf{p} + a_2\mathbf{q} = b_1\mathbf{p} + b_2\mathbf{q}$, then $a_1 = b_1$ and $a_2 = b_2$.

Ans:

If $a_1\mathbf{p} + a_2\mathbf{q} = b_1\mathbf{p} + b_2\mathbf{q}$, then we have $(a_1 - b_1)\mathbf{p} = (b_2 - a_2)\mathbf{q}$.

We claim that $a_1 = b_1$. Otherwise, $a_1 - b_1 \neq 0$ and we have $\mathbf{p} = \frac{b_2 - a_2}{a_1 - b_1} \mathbf{q}$ which implies \mathbf{p} is parallel to \mathbf{q} that contradicts to the assumption. Therefore, we have $a_1 = b_1$.

As a result $a_1 - b_1 = 0$. Therefore, $(b_2 - a_2)\mathbf{q} = \mathbf{0}$, but \mathbf{q} is nonzero, so $b_2 - a_2 = 0$, i.e. $a_2 = b_2$.

In the above diagram, ABCD is a parallelogram and F is a point on AB.

Suppose that DF and AC intersect at the point E such that $DE : EF = \lambda : 1$, where $\lambda > 0$. Let $\overrightarrow{AB} = \mathbf{p}, \ \overrightarrow{AD} = \mathbf{q}, \ \overrightarrow{AE} = h\overrightarrow{AC}$ and $\overrightarrow{AF} = k\overrightarrow{AB}$, where h, k > 0.

- (a) i. Express \overrightarrow{AE} in terms of h, \mathbf{p} and \mathbf{q} .
 - ii. Express \overrightarrow{AE} in terms of λ , $k \mathbf{p}$ and \mathbf{q} . Hence, show that $\lambda = \frac{1}{k}$.

(b) Given that
$$|\mathbf{p}| = 3$$
, $|\mathbf{q}| = 2$ and $\angle DAB = \frac{\pi}{3}$.

i. Find $\mathbf{p} \cdot \mathbf{q}$.

- ii. Suppose that DF is perpendicular to AC.
 - (1) Express \overrightarrow{DF} in terms of k, \mathbf{p} and \mathbf{q} , and so find the value of k.
 - (2) Using (a), find the length of AE.

Ans:

(a) i.
$$\overrightarrow{AE} = h\overrightarrow{AC} = h(\mathbf{p} + \mathbf{q})$$

ii.
$$\overrightarrow{AE} = \frac{1}{1+\lambda} (\lambda \overrightarrow{AF} + 1 \overrightarrow{AD}) = \frac{1}{1+\lambda} (k\lambda \mathbf{p} + \mathbf{q}).$$

Therefore, $h(\mathbf{p} + \mathbf{q}) = \frac{1}{1+\lambda} (k\lambda \mathbf{p} + \mathbf{q}).$ Then, we have $h = \frac{k\lambda}{1+\lambda}$ and $h = \frac{1}{1+\lambda}.$
Hence, $k\lambda = 1$ and the result follows.

(b) i.
$$\mathbf{p} \cdot \mathbf{q} = |\mathbf{p}| |\mathbf{q}| \cos \angle DAB = 3$$

ii. (1) $\overrightarrow{DF} = \overrightarrow{AF} - \overrightarrow{AD} = k\mathbf{p} - \mathbf{q}$.
Since $\overrightarrow{DF} \perp \overrightarrow{AC}$, we have $\overrightarrow{DF} \cdot \overrightarrow{AC} = 0$. Then,

$$(k\mathbf{p} - \mathbf{q}) \cdot (\mathbf{p} + \mathbf{q}) = 0$$

$$k|\mathbf{p}|^{2} + (k-1)\mathbf{p} \cdot \mathbf{q} - |\mathbf{q}|^{2} = 0$$

$$9k + 3(k-1) - 4 = 0$$

$$k = \frac{7}{12}$$

(2) For
$$k = \frac{7}{12}$$
, $\lambda = \frac{12}{7}$, $h = \frac{7}{19}$. Then, $|\overrightarrow{AE}|^2 = |\frac{7}{19}(\mathbf{p} + \mathbf{q})|^2 = (\frac{7}{19})^2(\mathbf{p} + \mathbf{q}) \cdot (\mathbf{p} + \mathbf{q}) = \frac{49}{19}$.
Hence, $|\overrightarrow{AE}| = \frac{7\sqrt{19}}{19}$.

7.

In the above diagram, A, B, C are three distinct points in \mathbb{R}^2 and let $\overrightarrow{AB} = \mathbf{p}$, $\overrightarrow{AC} = \mathbf{q}$. Suppose that D, E and F are mid-points of AB, AC and BC respectively, M is the intersection of CD and BE.

- (a) Suppose that CM: MD = r: 1 and BM: ME = s: 1, where r, s > 0.
 - i. Express \overrightarrow{AM} in terms of r, **p** and **q**.
 - ii. Express \overrightarrow{AM} in terms of s, \mathbf{p} and \mathbf{q} .

iii. Hence, show that
$$r = s = 2$$
 and $\overrightarrow{AM} = \frac{1}{3}(\mathbf{p} + \mathbf{q})$

(b) Prove that three medians AF, BE and CD of $\triangle ABC$ intersect at the point M.

Also, prove that CM: MD = BM: ME = AM: MF = 2:1.

Ans:

(a) i.
$$\overrightarrow{AM} = \frac{1}{1+r} (1\overrightarrow{AC} + r\overrightarrow{AD}) = \frac{1}{1+r} (\mathbf{q} + \frac{r}{2}\mathbf{p}) = \frac{r}{2(1+r)}\mathbf{p} + \frac{1}{1+r}\mathbf{q}$$

ii. $\overrightarrow{AM} = \frac{1}{1+s} (1\overrightarrow{AB} + s\overrightarrow{AE}) = \frac{1}{1+s} (\mathbf{p} + \frac{s}{2}\mathbf{q}) = \frac{1}{1+s}\mathbf{p} + \frac{s}{2(1+s)}\mathbf{q}$
iii. Hence, we have $\frac{r}{2(1+r)} = \frac{1}{1+s}$ and $\frac{1}{1+r} = \frac{s}{2(1+s)}$.
By solving the above, we have $r = s = 2$. By putting $r = 2$ into the result in (a)(i), we have $\overrightarrow{AM} = \frac{1}{3}(\mathbf{p} + \mathbf{q})$.

(b) Note that $\overrightarrow{AF} = \frac{1}{2}(\mathbf{p} + \mathbf{q})$, so $\overrightarrow{AM} = \frac{2}{3}\overrightarrow{AF}$ which means \overrightarrow{AM} is parallel to \overrightarrow{AF} . Therefore, A, M and F are collinear.

Furthermore, $\overrightarrow{MF} = \frac{1}{3}\overrightarrow{AF}$, so AM: MF = 2:1. Therefore, we have CM: MD = BM: ME = AM: MF = 2:1.

8. Let $a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n \in \mathbb{R}$ and let

$$p(t) = \sum_{i=1}^{n} (a_i - b_i t)^2$$

be a polynomial.

By using the fact that $p(t) \ge 0$ for all $t \in \mathbb{R}$, prove that the Cauchy Schwarz inequality holds, i.e.

$$\left(\sum_{i=1}^{n} a_i b_i\right)^2 \le \left(\sum_{i=1}^{n} a_i^2\right) \left(\sum_{i=1}^{n} b_i^2\right)$$

and the equality holds if and only if $a_1 = tb_1, a_2 = tb_2, \ldots, a_n = tb_n$ for some $t \in \mathbb{R}$.

Ans:

Note that

$$p(t) = \sum_{i=1}^{n} (a_i - b_i t)^2$$

= $\left(\sum_{i=1}^{n} b_i^2\right) t^2 - 2\left(\sum_{i=1}^{n} a_i b_i\right) t + \left(\sum_{i=1}^{n} a_i^2\right) t^2$

Clearly, $\left(\sum_{i=1}^{n} b_i^2\right) \ge 0$. However, if $\left(\sum_{i=1}^{n} b_i^2\right) = 0$, then $b_1 = b_2 = \cdots = b_n = 0$ and so the required inequality is trivially true.

Now, we assume that $\left(\sum_{i=1}^{n} b_i^2\right) > 0$. Note that $p(t) \ge 0$ for all $t \in \mathbb{R}$, the quadratic equation p(t) = 0 has either no solution or only one solution. Therefore, the discriminant of p(t) is less than or equals to 0.

$$\left[2\left(\sum_{i=1}^{n}a_{i}b_{i}\right)\right]^{2} - 4\left(\sum_{i=1}^{n}a_{i}^{2}\right)\left(\sum_{i=1}^{n}b_{i}^{2}\right) \leq 0$$

$$4\left(\sum_{i=1}^{n}a_{i}b_{i}\right)^{2} \leq 4\left(\sum_{i=1^{n}}a_{i}^{2}\right)\left(\sum_{i=1}^{n}b_{i}^{2}\right)$$

$$\left(\sum_{i=1}^{n}a_{i}b_{i}\right)^{2} \leq \left(\sum_{i=1}^{n}a_{i}^{2}\right)\left(\sum_{i=1}^{n}b_{i}^{2}\right)$$

Furthermore, the equality holds if and only if the discriminant of p(t) equals to 0, which means p(t) = 0 has exactly one solution. Therefore, each square in the summation of p(t) must be zero, i.e. $a_i - tb_i = 0$, i.e. $a_i = tb_i$ for all i = 1, 2, ..., n.